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Abstract
The spin–boson model, often used in NMR and ESR physics, quantum optics
and spintronics, is considered in a solvable limit to model a spin one-half
particle interacting with a bosonic thermal bath. By applying external pulses
to a non-equilibrium initial state of the spin, work can be extracted from the
thermalized bath. It occurs on the timescale T 2 inherent to quantum coherence.
The work (partly) arises from heat given off by the surrounding bath, while the
spin entropy remains constant during a pulse. This presents a new mechanism
and time and temperature regimes for limiting the validity of the Clausius
inequality and Thomson’s formulation of the second law (cycles cost work).
Apart from this, starting from a fully disordered state, coherence can be induced
by employing the bath. A gain from a positive-temperature (inversion-free)
two-level system is shown to be possible.

PACS numbers: 05.70.−a, 03.65.−w

1. Introduction

The consensus between thermodynamics and quantum mechanics lies at the heart of modern
physics. The viewpoint expressed in textbooks [1], namely that thermodynamical laws and
relations are extendible to the quantum situation, was recently strengthened by consideration
of microscopic analogues of the Carnot engine [2], quantum Szilard machines [3] and the
Jaynes principle [4]. Some of the basic thermodynamical processes were recently proposed
to be realizable in quantum-optical setups [5].

We have recently discussed [6, 7] situations—displayed via the exactly solvable model
of a harmonic Brownian oscillator coupled to its thermal bath—where several formulations
of the second law are not valid in the quantum situation: the Clausius inequality d̄Q � T dS

can be broken, the rates of energy dispersion and entropy production can be negative, and
several cycles are possible where heat extracted from a bath is fully converted into work.
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The cause of the breakdown of the universal thermodynamic picture was the entanglement
between the Brownian particle and its bath, which can be visualized as the occurrence of a
cloud of interaction modes (photons or phonons) around the central system. The cloud is
not present at high temperatures, but, due to the non-vanishing coupling to the bath, it builds
up at low T, inducing non-thermodynamic physics. Nevertheless, these findings support the
Thomson formulation of the second law (cycles cost work) applied to an equilibrium initial
distribution, for which an exact proof exists [8].

Here we present a complementary mechanism, based on the quantum coherence, which
provides another scenario for limiting the validity of the second law. It is realized in two-level
systems coupled to a thermal bath and subject to external forces. A similar system already
refreshed our understanding of thermodynamics, because after Hahn discovered the spin–echo
in NMR physics [9], this phenomenon was discussed in a thermodynamical context [10], and
it was even suspected to endanger the second law [11].

We consider the ‘spin–boson model’ for a spin- 1
2 (an electron, a two-state atom in a field

or a two-level Josephson junction) interacting with a bath of harmonic oscillators [12, 13].
The Hamiltonian reads

H = H(�) = HS + HB + HI HS = ε

2
σ̂z +

�

2
σ̂x

HB = ∑
k h̄ωkâ

†
kâk HI = 1

2

∑
k

gk

(
â
†
k + âk

)
σ̂z.

(1)

HS,HB and HI stand for the Hamiltonians of the spin, the bath and their interaction,
respectively. σ̂x, σ̂y and σ̂z = −iσ̂x σ̂y are the Pauli matrices, and â

†
k and âk are the creation

and annihilation operators of the bath oscillator with the index k, while the gk are the coupling
constants. For an electron in a magnetic field B, ε = ḡµBB is the energy, with ḡ the gyro-
magnetic factor and µB the Bohr magneton. In ESR physics [14] the model represents an
electron spin interacting with a bath of phonons, for NMR it can represent a nuclear spin
interacting with a spin bath, since in certain natural limits the latter can be mapped to the
oscillator bath [15]. In quantum optics it is suitable for describing a two-level atom interacting
with a photonic bath [15, 16].

Starting from general physical arguments [12], one typically takes the quasi-Ohmic
spectral density of the bath

J (ω) =
∑

k

g2
k

h̄ωk

δ(ωk − ω) = gh̄

π
e−ω/� (2)

where g � 1 is a dimensionless damping constant and the exponential cuts off the coupling
at ω � �, the maximal frequency of the bath. The thermodynamic limit for the bath has been
taken here which allows a thermodynamic analysis of a small system (the spin) coupled to a
large bath.

First, we consider the model with � = 0, which is a prototype of a variety of physical
systems [12], and known to be exactly solvable [12, 13], since the z-component of the spin is
conserved, and with it the spin energy. Physically it means that we restrict ourselves to times
much less than the relaxation time T1 of the longitudinal component 〈σ̂z〉. The von Neumann
evolution equation for âk(t) (Heisenberg representation) has the exact solution∑

k

gk

[
â
†
k(t) + âk(t)

] = η̂(t) − σ̂zG(t) (3)

where we denoted the quantum noise operator

η̂(t) =
∑

k

gk

[
â
†
k(0) eiωkt + âk(0) e−iωkt

]
(4)
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which will act as a random force on the spin, and where

G(t) =
∑

k

g2
k

h̄ωk

(1 − cos ωkt) = gh̄�

π

�2t2

1 + �2t2
. (5)

Thus 1/� is the relaxation time of the bath, and for t � 1/� the system is in the
thermodynamical regime [1, 10].

1.1. Separated initial state

Because our purpose is to discuss thermodynamical relations in experimentally realizable
non-equilibrium situations, we consider two types of initial setup: separated initial states and
preparation via an excitation in the equilibrium state. To describe situations where the spin was
suddenly brought into contact with the bath, e.g. an electron injected into a semiconductor, an
atom injected into a cavity or an exciton created by external radiation, we make the assumption
that initially, at t = 0, the spin and the bath are in a separated state, the latter being Gibbsian
at temperature T = 1/β: ρ(0) = ρS(0) ⊗ exp(−βHB)/ZB , where ρS(0) is the initial density
matrix of the spin. Here the quantum noise is stationary and Gaussian with average zero and
time-ordered autocorrelation function: KT (t − t ′) = 〈T η̂(t)η̂(t ′)〉, where T stands for the
time-ordering operator and the brackets for the trace over the initial state. For t > 0 it holds
that

KT (t) = h̄2[ξ̈ (t) − iG̈1(t)] (6)

where an explicit calculation yields

ξ(t) = g

π
ln

�2
(
1 + T

h̄�

)√
1 + �2t2

�
(
1 + T

h̄�
− i T t

h̄

)
�

(
1 + T

h̄�
+ i T t

h̄

) (7)

G1(t) = g

π
�t − γ (t) γ (t) = g

π
arctan �t. (8)

The Heisenberg equations for the spin operators σ̂± = σ̂x ± iσ̂y have, with ω0 = ε/h̄, the
solution

σ̂±(t) = exp (±iω0t) ̂±(t, 0)σ̂±(0) ̂±(t1, t0) ≡ e−iG1(t1−t0)T exp ± i

h̄

∫ t1

t0

dsη̂(s) (9)

η(t), depending only on âk(0) and â
†
k(0), commutes with σ̂x,y,z(0). Thus one gets by evaluating

the time-ordered product with the help of Wick’s theorem

〈σ̂±(t)〉 = e±iω0t−ξ(t)〈σ̂±(0)〉. (10)

For t � 1/� equation (7) brings ξ(t) ≈ t/T2, T2 = h̄/(gT ). Thus T2 can be identified with
the transversal decay time.

The density matrix of the spin reads

ρS = 1
2 [1 + 〈σ̂x (t)〉σ̂x + 〈σ̂y(t)〉σ̂y + 〈σ̂z(t)〉σ̂z]. (11)

Its von Neumann entropy equals SvN = −tr ρS ln ρS = −p1 ln p1 − p2 ln p2, where
p1,2 = 1

2 ± 1
2 |〈
σ 〉|. In the course of time |〈
σ(t)〉| decays to |〈σ̂z(0)〉|, which makes the

von Neumann entropy increase. Since there is no heat flow—the energy is conserved—this
is a particular case of the H-theorem, which is one of the formulations of the second law; see
[17] for a recent discussion.
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1.2. A sudden pulse

So far we considered the Hamiltonian (1) with � = 0. A fast rotation around the x-axis is
described by taking a large � during a short time δ1, so that within δ1 the influence of the
rest of the Hamiltonian can be neglected (fast pulse [14]). The evolution operator describing
the pulse becomes U1 = exp(−iδ1H(�)/h̄) ≈ exp

(
1
2 iθ1σ̂x

)
, with θ1 = −δ1�/h̄ the rotation

angle,

U−1
1

(
σ̂y

σ̂z

)
U1 =

(
σ̂y cos θ1 + σ̂z sin θ1

σ̂z cos θ1 − σ̂y sin θ1

)
. (12)

During the sudden switchings of �(t) from 0 to � and from � to 0, the state of the system
does not change, so ρ(t + δ1) = U1ρ(t)U−1

1 . The work done by the source is the change of the
total energy (since the overall energy is conserved, this is the amount of energy which flowed
to the source inducing the external field [1, 10]):

W1(t) = tr ρ(t)
(
U−1

1 HU1 − H
)
. (13)

In the present case it becomes

W1 = −ε

2
(1 − cos θ1)〈σ̂z(0)〉 − ε

2
sin θ1〈σ̂y (t)〉 +

1

2
(1 − cos θ1)G(t) − h̄ξ̇ (t)

2
sin θ1〈σ̂x (t)〉.

(14)

Our main interest is work extraction from the bath. We therefore first consider the limit ε → 0,
where the spin has no energy. For small g and for t � 1/�

W1 = (1 − cos θ1)
gh̄�

2π
− sin θ1

gT

2
〈σ̂x(0)〉 e−t/T2 . (15)

If for a fixed t, temperature is neither too large nor too small, T e−t/T2 > (h̄�/π) tan 1
2θ1, work

can be extracted (W1 < 0), provided the spin started in a coherent state 〈σ̂x(0)〉 = 1. This
possibility to extract work from the bath disappears on the timescale T2, because then the
coherence is lost, 〈σ̂x,y (t)〉 → 0. The existence of work extraction by means of a cycle (pulse)
goes against the non-equilibrium Thomson formulation of the second law.

Now note that heat �Q received by the spin is standardly defined [1, 10] as �Q =
�U − W , where W is the work, and �U = ε�(〈σ̂z〉)/2 is the change of the spin’s energy during
the action of the extremal field. Under a rotation the length |〈
σ 〉|, and with it the von Neumann
entropy, is left invariant, so one has a process with �Q = −W1 > 0, �SvN = 0, violating the
Clausius inequality �Q � T �SvN. This inequality is one of the non-equilibrium formulations
of the second law [1, 10]; it connects thermal disorder (heat) with the configurational disorder
(entropy). The appearance of the von Neumann entropy in this inequality and further details
on it are discussed in [17].

A pulse with θ1 = π is called ‘classical’, since it does not generate coherent terms 〈σ̂x,y 〉.
According to equation (15) it costs energy. Combinations of π pulses can extract work from
a non-thermalized bath, i.e. for times ∼1/�.

1.3. Initial preparation via a rotation

Let us now consider another realistic non-equilibrium initial state: a Gibbsian of the total
system, ρG = exp(−βH)/Z, in which at t = 0 the spin is rotated (‘zeroth pulse’) over an
angle θ0 = 1

2π around the y-axis, thus mapping σ̂z → σ̂x, σ̂x → −σ̂z. Such a state models
the optical excitation of the spin, as is done in NMR and spintronics. (A rotation around the
x-axis would yield closely related results, e.g. in equations (16), (17) and (20) time-dependent
sines and cosines would be interchanged.) Though ρ(0) does not have a product form, the
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problem remains exactly solvable. For the pulse described by (12) and (13) one now gets for
t � 1/� the decomposition W1 = �U1 − �Q1 with the change in energy of the spin

�U1 = −ε

2
sin θ1 sin ω0t tanh

βε

2
e−t/T2 (16)

and the heat absorbed from the bath

�Q1 = −(1 − cos θ1)
gh̄�

2π
+

gT

2
sin θ1 cos ω0t tanh

βε

2
e−t/T2 . (17)

An interesting case is where work is performed by the total system (W1 < 0) solely due to
heat taken from the bath (�Q > 0, �U = 0). This process, possible by choosing t = 2πn/ω0

with integer n, is forbidden by folklore-minded formulations of the second law. Note that the
Clausius inequality is violated since �SvN = 0.

The work needed at time zero to rotate the spin is W0 = (ε/2) tanh(βε/2) + gh̄�/(2π)

representing the work done on the spin and on the bath, respectively. It can be verified that
the total work W0 + W1 is always positive, so Thomson’s formulation for a cyclic change [8]
(here: the combination of the pulses at time t = 0 and t) starting from equilibrium is obeyed.

1.4. Two pulses in a rotated initial Gibbsian state

Typical measurements in NMR physics are carried out on disordered ensembles of many
independent spins [14]. If each spin is in a slightly different external field, the frequency
ω0 = ε/h̄ can be viewed as a random quantity (inhomogeneous broadening) for which we
assume the distribution

p(ω0) = 1

π

[T ∗
2 ]−1

(ω0 − ω̄0)2 + [T ∗
2 ]−2

(18)

having average ω̄0 and inverse width T ∗
2 , typically much smaller than T2. Here T ∗

2 defines a
new relaxation time for the average (collective) transversal components. In this case the gain for
a single pulse is washed out, leaving only a loss, the first term of equation (17). Nevertheless, as
in spin–echo experiments, the effect survives when two pulses are considered. We consider
again the initial Gibbsian state rotated over 1

2π around the y-axis, and perform a first π pulse
around the x-axis at time t1 and a second 1

2π pulse at time t2 = t1 + τ . In the regime of small
g and large t1 ∼ T2 the work in the second pulse is

W2 = gh̄�

2π
− 1

2
e−t1/T2ε sin ω0τ tanh

βε

2

− 1
2 e−t2/T2 tanh

βε

2
cos ω0t1(ε sin ω0τ + gT cos ω0τ ). (19)

At moderate times only slowly oscillating terms survive. They are the ones that involve
�t = t2 − 2t1. For the average of the total work W1 + W2 this brings

W = 3gh̄�

2π
− h̄

2
e−t2/T2−|�t|/T ∗

2 tanh
βh̄ω̄0

2

{
ω̄0 sin ω̄0�t

+

[
1

T2
− sg(�t)

T ∗
2

(
1 +

βh̄ω̄0

sinh βh̄ω̄0

)]
cos ω̄0�t

}
. (20)

For a �t near 2πn/ω̄0 the odd terms cancel, and W again exhibits work extracted solely from
the bath. At �t = 0 one gets, using sg(0) = 0, a result close to equation (15).



880 A E Allahverdyan and Th M Nieuwenhuizen

1.5. Bath-induced gain without inversion

It is common knowledge that a two-level system with population inversion, i.e. with a negative
temperature, is capable of amplifying light and represents the basic working mechanism of
lasers and masers. In this context a bath is typically considered as a source of undesirable
noises and relaxation towards equilibrium, supposed drawbacks for amplification [16]. Here
we show that the bath can nevertheless play a totally different role, namely in assisting work
extraction (gain) by means of a positive temperature state in the two-level system. In the
absence of coupling to the bath such an effect is strictly prohibited by the second law applied
to a positive temperature spin state [8].

We consider separated initial conditions with 〈σ̂x(t)〉 = 〈σ̂y (t)〉 = 0, and apply a − 1
2π

pulse around the x-axis at time t0 = 0+, and a 1
2π pulse at t. For t � 1/� the work W =

�U − �Q is set by:

�U = −ε

2
[1 − e−ξ(t) cos ω0t]〈σ̂z〉 +

gε

4
e−ξ(t) sin ω0t

(21)
�Q = −gh̄�

π
+

1

2
gT e−ξ(t) sin ω0t〈σ̂z〉

where ξ was defined in (7). In the inversion-free case, the initial state of the spin is a Gibbsian
connected to a positive temperature T0 = 1/β0, for which 〈σ̂z〉 = −tanh 1

2β0ε � 0. Let
us first investigate the case T0 = ∞ (completely random state, 〈σ̂x,y,z〉 = 0). The work W

can be negative (gain) provided ε > 4h̄�/π . This situation can be met in quantum optical
two-level systems [16, 22] and in NMR [18]. This mechanism concerns work extraction with
the help of the bath (it disappears for g → 0), but not from the bath, since now �Q < 0. The
origin of the effect is that although the state of the spin was completely disordered initially,
the first pulse does generate some coherence. Due to back reaction of the bath one has after
the pulses 〈σ̂y(t)〉 = sin γ (t) exp(−ξ(t)) sin ω0t , where γ (t) of equation (8) goes from 0 to
1
2 g on the timescale 1/�, the reaction time of the bath. At finite T0 the term �U can still be
negative when T0 � ε/g, which can be met for not-too-small g, a condition anyhow needed
for having a sizeable effect. From a thermodynamic point of view the gain can just be seen
as a flow of energy from a high temperature (of the spin) to a lower one (of the bath), and
the outside world (gain). Note that there exist other mechanisms for inversionless gain [16].
The crucial difference as compared to the present proposal is that they operate with (at least)
three-level systems (atoms), and—most importantly—there the effect appears due to special,
non-thermal states of the atom itself. Frequently these states can be disclosed as containing a
hidden inversion [16].

1.6. Feasibility

Let us mention a few aspects favouring the feasibility of the reported scheme. (1) Work and
heat were measured in NMR experiments more than 35 years ago [19]; (2) our main effects do
survive the averaging over disordered ensembles of spins. (3) There are experimentally realized
examples of two-level systems, which have sufficiently long T2 times, and admit external
variations on times smaller than T2: (i) for atoms in optical traps T2 ∼ 1 s, 1/� ∼ 10−8 s,
and there are efficient methods for creating non-equilibrium initial states and manipulating
atoms by external laser pulses [22]; (ii) for an electronic spin injected or optically excited in a
semiconductor T2 ∼ 1 µs [20]; (iii) for an exciton created in a quantum dot T2 ∼ 10−9 s [21]
(in cases (ii) and (iii) 1/� ∼ 10−13 s and femtosecond (10−15 s) laser pulses are available);
(iv) in NMR physics T2 ∼ 10−6 − 1 s and the duration of pulses can be comparable with
1/� ∼ 1 µs.
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2. Conclusion

We report a new mechanism, displayed via the spin–boson model, which limits the validity
of the Clausius inequality and Thomson’s formulation of the second law. In particular, work
can be extracted from the equilibrated bath by means of external pulses (cycles). The cause
of the effect lies in quantum coherence of the spin (transversal components), in the presence
of coupling to the bath. The effect does not exist for classical pulses, as they do not excite
coherence. Otherwise, characteristic times and temperature can be large T2 � 10 s, T � 100 K.

It is instructive to compare with quantum limits to the second law presented in [6, 7].
There the main issue lies in entanglement between the Brownian particle and its bath, reflected
in the non-Gibbsian stationary state of the particle. Characteristic times are in the nanosecond
regime and temperatures in the (sub-)Kelvin regime.

For the current model the presence of entanglement remains to be demonstrated. As
seen from (1) the Gibbs state of the total system will imply for the state of the spin the same
Gibbs distribution with the Hamiltonian HS . In this context let us stress the general reasons
for viewing the spin and the bath as two different subsystems: (i) observational accessibility:
the bath is not observed in experiments, while the spin is; (ii) timescale separation: the bath
relaxation time is much smaller than that of the spin; (iii) no backreaction: the spin does not
perturb the collective variables of the bath due to its macroscopic character.

We finally show that gain is possible from a positive temperature (inversion-free) initial
state, due to the non-intuitive phenomenon of bath-induced coherence, a new principle for
bath generated lasing and masing.

All these effects are in perfect agreement with the equilibrium Thomson formulation of
the second law [8].
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